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Abstract: Pavement deterioration models are important inputs for pavement management systems (PMS). These models are based on the
study of performance data, and they provide the evolution law of pavement deterioration. Performance data consist of observations of pave-
ment section conditions, and are collected through several follow-up campaigns on road networks. To characterize the pavement deterioration
process, several statistical methods have been developed at the Laboratoire Central des Ponts et Chaussées (LCPC). However, these methods
are suboptimal for modeling the evolution of pavement deterioration, as they ignore unit-specific random effects and potential correlation
among repeated measurements. This paper presents a nonlinear mixed-effects model enabling accounting for the correlation between ob-
servations on the same pavement section. On the basis of this nonlinear mixed-effects modeling, we investigate and identify structural and
climatic factors that explain differences in the parameters between pavement sections, and quantify the impact of these factors on pavement
evolution. The proposed model provides a good fit for describing the evolution law of different pavement sections. The performance of
this model is assessed using simulated and real data. DOI: 10.1061/(ASCE)TE.1943-5436.0000257. © 2012 American Society of Civil
Engineers.
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Author keywords: Nonlinear mixed effects model; Pavement design; Cracking; Longitudinal data.

Introduction

The optimization of road maintenance management tasks, over
both the medium and long terms, requires knowledge of the set
of factors that could influence the pavement condition. Under
the repeated application of traffic loads, such factors are divided
into two categories: the pavement structure (thickness of the vari-
ous layers) and the climatic conditions (height of precipitation)
[Laboratoire Central des Ponts et Chaussées-Service d’études sur
les transports, les routes et leurs aménagements (LCPC-SETRA)
1994]. To identify these factors, statistical methods for analyz-
ing experimental data from repeated measurements have been in-
troduced (Lorino et al. 2006; Lepert et al. 2004, 2003;
Leroux et al. 2004). They enable describing the evolution curve
of cracking on particular pavement sections according to the pave-
ment section age and with respect to one or several explanatory
variables.

These modeling methods are classified into two categories: non-
linear regression methods, called direct, indirect methods (Leroux
2003; Lepert and Riouall 2002) and statistical methods resulting
from application of survival laws theory (Cox proportional hazards
and parametric models) (Courilleau and Marion 1999; Rèche
2004). The advantage of using mathematical models is that they
facilitate the analysis and interpretation of the observed data be-
cause they describe the evolution law as a function of only a few
parameters that can be statistically compared.

However, these previous analyses cannot exactly predict the
measured data because of unaccounted correlation between obser-
vations on the same pavement section. Also, they cannot test
whether the measurement error is significant (Khraibani et al.
2009). To this end, we introduce the nonlinear mixed-effects model
to predict future pavement conditions.

For repeated measurements data, mixed-effects models offer a
flexible framework in which population characteristics are modeled
as fixed effects and unit-specific variation is modeled as random
effects. Linear mixed-effects (LME) models (Laird and Ware
1982; Ware 1985; Diggle et al. 1994) and nonlinear mixed-effects
(NLME) models (Davidian and Giltinan 1995; Vonesh and
Chinchilli 1997) are widely used in longitudinal data analysis.

Recent literature on reliability contains many papers that applied
mixed-effects approaches to model a wide variety of degradation
data. Archilla and Madanat (2001) and Onar et al. (2006) proposed
a linear mixed-effect model for pavement application. Yuan and
Pandey (2009) used a nonlinear mixed-effects model for monitor-
ing and predicting degradation in nuclear piping systems.

The overall objectives of this paper are to (1) develop a nonlin-
ear mixed-effects model for describing pavement section behavior
as a function of time, taking individualization into account; (2) em-
ploy a logistic function to model the sigmoid evolution law of
pavement cracking; and (3) examine the effects of the pavement
structure and the climatic conditions factors on pavement behavior
by incorporating covariates into the model. Finally, the analysis
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was performed with the statistical software S-PLUS and its library
for nonlinear mixed-effects models (NLME) (Pinheiro and Bates
2000).

Methodology

Data Sets

The NLME model described in this paper was applied to two types
of pavement cracking database. The first type corresponded to
slowly degraded test section data that comes from a cooperation
between the Laboratoire Central des Ponts et Chaussées (LCPC)
and the Ministère des Transports du Québec (MTQ). Noting that,
the aim of the cooperation project was to study the pavement
behavior in the winter. The second database corresponded to simu-
lated data, which allowed us to investigate the influence of struc-
tural factors and mechanical properties on the evolution law of
pavement deterioration.

MTQ Data
Pavement test sections were constructed in Québec around 1998
and their cracking behavior was monitored over nine years. The
45 pavement sections of the test set are shown in Fig. 1. Notice
that each section was visually inspected between 2 and 12 times
per year. On-site operators established a cartographic representa-
tion of the cracking, which then served as a basis for the precise
laboratory measurement of a visible crack length. The total mea-
sured crack length was expressed in millimeters per square meter.
This approach enabled not only a comparison of test sections that
may contain different lane widths and different number of lanes, but
also observation of crack progression better than a simple calcula-
tion of the number of cracks.

However, the data set was represented by longitudinal, irregu-
larly spaced, and unbalanced plots. For all sections in this data,
thermal cracking appeared after pavement maintenance but with
a very low cracking rate as a phenomenon of premature cracking.
After a period of five years, cracks progressed at a higher rate;
within a few months, or even weeks, the majority of the cracks
formed. As known, pavements exposed to harsh winter climates
experience transverse thermal cracking earlier in their life cycle.
Consequently, the two covariates associated with the response
variable (percent of cracking) are the time of observation and the
averaged annual height of precipitation (Hp).

The measurements of the same section are connected with lines.
For each section, a distinct nonlinear increase of pavement cracking
with age is shown, but a considerable variation exists among
sections.

Simulated Data
The data set was generated using a fatigue-crack propagation model
whose random parameters followed a Weibull probability distribu-
tion. These simulated data contained 100 maintained sections. For
each section, 90 to 120 cracking measurements varying from 0% to
100% were considered. These cracking measurements depended on
both the initial pavement layer and the surface layer (overlayer) and
all fatigue cracking measurements for each pavement section were
assumed to return to 0% after maintenance. In other words, the non-
linear behavior of the initial pavement layer was taken into account
by subdividing the layer into two successive layers (bottom and
interface layer) having mechanical characteristics that vary as a
function of the stress and the thickness of the initial layer. Similarly,
when overlaying the initial layer, the nonlinear behavior of the
maintained pavement was taken into account by subdividing the
overlayer into two successive layers (interface and surface layer)
with mechanical characteristics that vary as a function of the stress
and thickness of the initial and surface layers. Hence, considering a
fixed elastic modulus at 16,000 MPa, this indicator was based on
three uncorrelated covariates
• h in [0.335; 0.465]: thickness of the initial layer expressed in m,
• ct in [65; 130]: time of maintenance expressed in months, and
• he in [0.085; 0.13]: thickness of the surface layer expressed inm.

Generalized Nonlinear Mixed-Effects Models

As noted in the introduction, the nonlinear mixed-effects frame-
work is widely used in describing a nonlinear relationship between
a response variable and parameters and covariates in the repeated
measurements data that are grouped by a cluster factor. NLME
models were initially proposed, in biostatistics literature, by
Lindstrom and Bates (1990), Pinheiro and Bates (1995), and
Davidian and Giltinan (1995). This study follows the generalized
nonlinear mixed-effects models proposed by Lindstrom and
Bates (1990).

For pavement section i with ni repeated measurements, the gen-
eralized NLMEmodel for pavement cracking data can be expressed
as

yij ¼ f ðβi; aij; xijÞ þ eij; i ¼ 1;…:;

j;…m; j ¼ 1;…; ni ð1Þ
where yij = measured value of the deterioration for section i at time
j; aij = age (years) for the ith section on time j, f = nonlinear func-
tion relating the response variable to age and to other possible
covariates xij varying with individual and time, βi = vector with
the parameters of nonlinear function, and eij = normally distributed
within-section error term. The parameter βi varies from one section
to another to account for intra and intersection variation and is
modeled as

βi ¼ Aiβ þ Bibi þ εi; bi ∼ Nð0;σ2
i Þ; εi ∼ Nð0; σ2ΛiÞ ð2Þ

where
• β = p × 1 vector of fixed effects parameters, common to all

sections,
• bi = q × 1 vector of random effects associated with the ith

section,
• εi = within group errors vector assumed to be independently

distributed with zero mean and variance-covariance matrix
σ2Λi, where Λi is the identity matrix,

• p = number of fixed parameters in the model,
• q = number of random parameters in the model, and
• ðσiÞ2 = variance-covariance matrix for the random effects.

Ai and Bi were design matrices for the fixed and random ef-
fects, respectively, where Ai was adequate to describe the possible

Fig. 1. Observed thermal cracking (%) versus age (years) for 45 pave-
ment sections
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influence of controlled factors in the parameters β of the model and
Bi described the variation between observations on each specific
section.

Estimated parameters and modeling variance-covariance struc-
ture were developed by using the maximum likelihood (ML)
method (Pinheiro and Bates 1995). Criteria and test procedures
were used for comparing alternative models.

In general, likelihood ratio tests are useful for choosing between
two models, where one model is a subset of the other. Akaike’s
information criterion (AIC) (Akaike 1974) and Bayesian informa-
tion criterion (BIC) (Schwarz 1976) were used to compare several
alternative models. Formulas for their computation are as follows.
AIC ¼ �2 ln LðΘÞ þ 2k, where LðΘÞ = maximized likelihood
function, k = number of model parameters. BIC ¼ �2 ln LðΘÞ þ
k lnðnÞ, where n = number of observations, equivalently the sample
size; k = number of free parameters to be estimated, and LðΘÞ =
maximized value of the likelihood function for the estimated
model. The smallest value for both criteria indicates the best fit.

Working Procedure to Fit NLME Model

To describe the evolution law of pavement behavior using NLME
model, the analysis consisted of three main steps.
• To avoid convergence problems attributable to over parameter-

ization, we will temporarily ignore the random-effect was tem-
porarily ignored and a single nonlinear fixed-effect model was
fit using nonlinear least square method. If no convergence was
obtained, other starting values were attempted.

• Next, the random effects parameters, as well as possible com-
binations, were introduced. The deviations of the individual
pavement sections from the fixed-effect parameters were repre-
sented in a random-effect plot. Diagnostics plots were used to
evaluate the model fit; for example, the normality of the random
effects were tested and the homogeneous spread around the zero
line of the residuals was checked.

• Finally, the third step was summarized by incorporating of sev-
eral factors into the NLME model and testing and analyzing the
effect of these factors on pavement behavior.

Results

MTQ Data

The model described above was applied to the MTQ database with
the objective of modeling the behavior of flexible pavements. The
MTQ database was chosen not only for its availability, but also for
its representativeness of thick bituminous pavement, largely used in
France and for its behavior in a severe climate, which maximizes
the distress. The form adopted for predicting the cracking measure-
ments was assumed as a sigmoïdal. Therefore, pavement sections
were described by logistic models

yij ¼
A

1þ exp½�ððtij�BÞ
C Þ�

þ eijð3Þ ð3Þ

where yij = percentage of cracking for the ith section at the jth meas-
urement time tij and i ¼ 1;…; 45, j ¼ 1;…; ni: eij = within-section
error term associated with the jh measurement on the ith section and
is assumed to have a Gaussian distribution with zero mean and vari-
ance σ2. The parameter A corresponded to the value of the horizon-
tal asymptote (the limit of cracking growth) at which roads are
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Fig. 2. Box plot of residuals from the nonlinear fixed-effect model
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Fig. 3. Box plot of residuals from the nonlinear mixed-effect model

Table 1. Statistics of Nonlinear Fixed-Effect Model

Value STD error DF t-value P-value

B 7.648 0.433 216 17.643 < 0:0001

C 1.472 0.140 216 10.466 < 0:0001
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completely degraded, and was set to 100% of cracking. The param-
eter B is the midpoint, the time at which yij ¼ A=2 ¼ 50%. C is the
scale parameter representing the distance on the time axis between
the midpoint and the point at which the response is A=ð1þ e�1Þ ¼
73% of cracking.

The first step was to determine appropriate starting values for
estimating model parameters. A suitable starting estimate for B
was the average time at which 50% of cracking was reached,
and a reasonable starting value for C was the difference between
the average times at which 50% and 73% of cracking were reached,
respectively.

We began with fitting a fixed nonlinear model (3) to the entire
data set. The least square estimates of the parameters were
B ¼ 8:536, C ¼ 1:935. The P-values indicated that the B and C
parameters were significant (< 0:0001) and both batches were stat-
istically different; therefore, the model was correctly parameter-
ized. The residual standard error (S.E.) was 10.630. Fig. 2
shows the boxplot of residuals from model (3), and that the resid-
uals tended to be negative for some sections and positive for others,
and the plots had different variations according to the residual S.E.

To account for variations on the same pavement section, random
components were introduced into model (3), yielding the following
nonlinear mixed-effects model

yij ¼
100

1þ exp½�ðtij�ðBþbiÞ
ðCþciÞ Þ�

þ eij ð4Þ

with the assumptions (bi; ciÞ ∼ Nð0; ðσiÞ2Þ, eij ∼ Nð0;σ2Þ and
b1;…; bn, c1;…; cn, e1;…; en, independent (with the number of
section n ¼ 45). B was replaced by Bþ bi to account for the cor-
relation between observations on the intra-individual variability in
the midpoint time. B was called the fixed-effect and bi was called
the random-effect and represented the individual section departure
from the average time of the midpoint. Similarly, the fixed-effect C
represented the mean level of the growth time for the population
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Fig. 4. Normal QQ plot of residuals
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Fig. 5. Normal QQ plot of random effects
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Fig. 6. Observed fatigue cracking (%) versus age (years) for the 45 pavement sections by climatic conditions [average annual height of precipitation
(Hp) indicated at the top of each graphic cell]

152 / JOURNAL OF TRANSPORTATION ENGINEERING © ASCE / FEBRUARY 2012



and ci was the individual section departure from the mean level of
the growth time.

The data were fitted with model (4), assuming that both random
effects were added to the formula. The parameter values, estimated
by maximum likelihood (ML), are given in Table 1. The P-values
of B and C remained very small (< 0:0001) and indicated that both
parameters were significant at the 5% level.

A rather weak correlation (0.354) was found between the mid-
point (B) and the shape parameter (C) indicating that the two
random effects from model (4) are required. Significant section-
to-section variation in B and C may reflect that the velocity of
propagation differs from one section to another, in which each
section has its own strength at a given moment.

In comparison with the estimates of model (3), the estimates of
the residual S.E. in model (4) decreased drastically from 10.630
to 3.241.

Fig. 3, showing the box plot of the residuals in model (4),
indicates that the residuals are approximately centered at zero,
and with several outlying observations. whereas the residuals of

model (3) have alternating sign and are much larger. Moreover,
the normality of the measurement errors was checked using the nor-
mal QQ plot of the residuals (Fig. 4). Fig. 4 indicates no significant
deviation from the normality assumption. In addition, Fig. 5 shows
the normality of the random effects. The assumption of normality
seems reasonable for both random effects.

Having established the most appropriate mixed-effects model
for the cracking measurements, the next step was to incorporate
the relevant covariate height of precipitation (Hp) into model (4).
The Hp variable is an important covariate for explaining section-to-
section variation (interindividual variability), as Fig. 6 seems to
indicate. Consequently, all parameters could be influenced by this
variability. Table 2 shows the results from including Hp in the
model as a covariate to explain the systematic among-section vari-
ability in B and C parameters. They indicated that the estimated
parameters B and β (β is the parameter associated with Hp in B)
were significant at the 5% level (P-value < 0:05), whereas the
parameters C and χ (χ is the parameter associated with Hp in
C) were not significant (P-value > 0:05) and therefore do not
explain the variation of pavement cracking depending on Hp.

Next, the backward elimination approach was used to select the
final model that fits the MTQ data with experimental conditions
(climatic factor). Then, non-significant terms were removed from
the model recursively (χ in this case).

The final model for the prediction of cracking measurements is

yij ¼
100

1þ exp½�ðtij�ðBþβ×HpþbiÞ
ðCþciÞ Þ�

þ eijð5Þ ð5Þ

where β = height of precipitation effect on the mean growth time B.
The significance of this term was assessed using the Wald tests (see
Table 3).

Because β was negative, the midpoint of the specific section
decreased with increasing values of Hp and, consequently, the
pavement sections deteriorated faster. Fittings model (5) were very
close to observations (see Fig. 7), reflecting the intra-individual
variability in the B and C parameters and the interindividual vari-
ability in the parameter B once Hp were taken into account.

Table 2. Statistics of Nonlinear Mixed-Effect Model with Covariate (Hp)

Value STD error DF t-value P-value

B 22.863 8.056 216 2.838 0.005

β �14:480 7.569 216 17.643 0.047

C 2.258 2.643 216 10.466 0.394

χ �0:725 2.493 216 15.321 0.771

Table 3. Statistics of Nonlinear Mixed-Effect Model with Covariate (Hp)
[Model 5]

Value STD error DF t-value P-value

B 22.863 8.056 216 2.838 0.005

β �14:480 7.569 216 17.643 0.047

C 2.258 2.643 216 10.466 0.394

Fig. 7. Cracking measurement is plotted against age (years) from the MTQ data, along with the individual fitted curves for each of four sections from
the 45 pavement sections
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The graphical results for this model were similar to those obtained
for model (4); residuals were approximately centered at zero and
the normal distribution characterizes the residuals and the random
effects. Finally, to conclude, according to both the AIC and BIC
criteria, the best fitting model for MTQ data was model (5) with
an AIC 1,548, which was marginally better than for model (4)
(AIC of 1,553).

Simulated Data

Similar to MTQ data, the logistic mixed-effects model was also
examined for simulated data. The intent of applying this model
to simulated data was to study the effect of several factors, espe-
cially the maintenance effect, when inadequate information exists
on the structural pavement in the real database (MTQ).

Fitting model (3) with only fixed-effect parameters resulted in
an AIC of 86,071. The P-values for B (13.362) and C (3.27) in-
dicated that both sets were statistically significant (both < 0:0001).
Adding the random effects, model (4) with random effects for
both fixed effects was also found to have an AIC of 30,897. A
strong correlation (0.974) was found between both random effects

(bi and ci). This correlation may allow for the possibility of elimi-
nating one of these random-effect parameters. Therefore, three
combinations are possible, including (bi), (ci), and (bi, ci). In all
cases, the models containing mixed-effects (fixed and random
parameters) performed better than the models with only fixed
effects, and the model including all random effects was found to
be the best with the lowest AIC and BIC values, as observed in
Table 4.

Similar to MTQ data, the normal distribution of random effects
parameters and residuals was examined. Fig. 8 shows a normal plot
of estimated random effects and indicates that both random effects
were normally distributed. Similarly, the normality of the residuals
seems reasonable, as shown in Fig. 9. The boxplots of residuals by
section is illustrated in Fig. 10, and indicates that the residuals were
approximately centered at zero.

Analysis of Covariates
A logistic mixed-effects model that examines the influence of struc-
tural pavement factors on the cracking evolution was constructed
using Akaike criterion and loglikelihood test for model selection.
The primary question of interest for the simulated data was the
effect of maintenance on the individual parameters (Bi, Ci). De-
pending on structural pavement conditions (for example, time of
maintenance, thickness of the based layer), the influence of any
other covariate could be studied.

Table 5 shows the model selection criteria for incorporation
of covariates. Both statistical criteria of AIC and the likelihood
ratio test (LRT) indicated the superiority of model (c) in which
all covariates had a significant effect on the midpoint and scale
parameters (B and C) whereas only one covariate (he) had no sig-
nificant effect on C parameter for model (b) (see Tables 5 and 6).
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Table 4. Likelihood Ratio Tests (LRT) for Nonlinear Mixed-Effects Models

Model Random parameters AIC BIC Log-likelihood Test LRT P-value

1 B, C 30777 30820 �15;382 —
2 B 51823 51852 �25;909 1 versus 2 21050 < 0:0001

3 C 84752 84781 �42;372 1 versus 3 53979 < 0:0001

4 None 86041 86063 �43;017 1 versus 4 55270 < 0:0001
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Fig. 10. Box plot of residuals from the nonlinear mixed-effect model
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The positive sign of the coefficient associated with the thickness of
the surface layer covariate indicates that this covariate increases the
value of B and, consequently, has a delay effect on the occurrence
of cracking. In other words, the pavement is able to better resist
fatigue cracking after maintenance. In addition, the pavement struc-
ture also proved to be influenced by the thickness of the base layer
(h): the positive sign of the coefficient associated with the h cova-
riate indicated that the higher the value of h, the more mechanically
robust the pavement and, therefore, cracking developed less rap-
idly. However, the parameter coefficient associated with the time
of maintenance (ct) dictates the shape of the curve (b). The longer
that maintenance is delayed, the faster cracking develops. Thus,
maintenance exerts a substantial effect on evolution speed. The
positive sign of the coefficient associated with the covariate ct
of C does not have physical significance, which is shown as a short-
coming of the model.

As a result, the covariate ct was not accounted for in the C
parameter of the model that yielded the estimates shown in Table 7.
These estimates, along with the diagnostic plot, have the same
interpretation as that of the model including ct.

To identify the best of the two models [model (c) and model
(d)], a comparison based on the prediction ability was carried out
and achieved by partitioning the data set into two subsets. The first

Table 6. Results of Fitting Model (c) to Simulated Data

Parameter Value STD error t-value P-value

B (Intercept) �35:901 0.722 �49:697 < 0:0001

B:h 131.706 1.639 80.318 < 0:0001

B:he 10.615 1.652 6.423 < 0:0001

B:ct �0:0247 0.003 �9:710 < 0:0001

C �4:781 0.072 �66:131 < 0:0001

C:h 18.261 0.169 107.64 < 0:0001

C:ct 0.002 0.005 10.615 < 0:0001

Table 7. Results of Fitting Model (d) to the Simulated Data

Parameter Value STD error t-value P-value

B (Intercept) �33:611 0.926 �36:283 < 0:0001

B:h 131.706 2.252 58.461 < 0:0001

B:he 10.641 1.644 6.468 < 0:0001

B:ct �0:047 0.003 �42:270 < 0:0001

C �4:526 0.099 �45:584 < 0:0001

C:h 18.289 0.247 73.784 < 0:0001

Table 5. Sequentially Incorporating Covariates into Model (c) to Determine Important Covariate. Model Selection Using Backward Elimination Approach

Model Covariates included AIC BIC Test LRT P-value

a None 30777 30820 —
b he, h, ct in B, and C 30026 30113 a versus b 762.551 < 0:0001

c he, h, ct in B, and h, ct in C 30024 30104 a versus c 726.458 < 0:0001

d he, h, ct in B, and h in C 30097 30170 a versus d 687.246 < 0:0001
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Fig. 11. Fitted values plotted against observed values for each of 12 from 100 pavement sections in the simulated data

JOURNAL OF TRANSPORTATION ENGINEERING © ASCE / FEBRUARY 2012 / 155



subset, containing data below 20% of cracking, was used for fitting.
The other subset served to determine the relative mean error
(RME). The obtained results showed that the two models have
almost the same prediction ability (RMEc ¼ 10:8% and RMEd ¼
10:7%) and justified, the choice of model (d), as it not only has
better prediction ability, but also a plausible physical interpretation.

Finally, the inclusion of the pavement structure factors in the
logistic mixed-effects model resulted in a reduction in the estimated
standard deviation for the B random effects from 3.620 to 0.609 and
in the estimated standard deviation for the C random effects from
0.499 to 0.064, indicating that a substantial part of the plot-to-plot
variation in these two parameters was explained by differences in
thickness of the base and surface layer. To illustrate the goodness
of fit, Fig. 11 shows 12 plots from a total of 100 plots. The plot-
specific estimates were close to the observed values, indicating that
the logistic mixed-effects model (d) adequately represented the
simulated data.

Conclusion

This paper developed a mixed-effects logistic model for describing
the evolution law of pavement deterioration and for identifying the
effects of several factors on pavement behavior. Using real data
(MTQ), the environmental factor was found to have a significant
influence on cracking progression.

In simulated data, the maintenance effect had a greater influence
on cracking progression. Restoring the structural capacity of flex-
ible pavements through timely maintenance intervention may assist
in delaying the rate of deterioration.

Traditional regression models assume that observations are in-
dependent and identically distributed; in case of longitudinal road
data studies, this hypothesis is no longer valid. Thus, having a re-
course to mixed models is necessary, which assume two sources
of variation, within and between sections. This decomposition
of variation leads to valid statistical estimations of the model
parameters.

This study showed the effectiveness of the logistic mixed-effects
model as a new approach to explain the pavement cracking data.
Furthermore, this approach made optimum use of the data by taking
into account unit-to-unit variability; consequently, the approach
was found to be more powerful than traditional regression ap-
proaches to establish the evolution curves of each pavement section
and to identify the most important factors involved in the cracking
process.
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